久久小说网
最新小说 | 小编推荐 | 返回简介页 | 返回首页
(好看的玄幻小说,尽在久久小说网,记得收藏本站哦!)
选择背景色:
                    浏览字体:[ 加大 ]   
选择字体颜色: 双击鼠标滚屏: (1最慢,10最快)
走进不科学_分节阅读_第1366节
小说作者:新手钓鱼人   小说类别:玄幻小说   内容大小:3.45 MB   上传时间:2024-06-07 18:17:31

  电磁相互作用对应SU(1)群,弱相互作用对应SU(2)群,强相互作用对应SU(3)群。

  SU(N)群可以用它的基础表示来进行定义,元素可写为U(α)=exp(-iαiTi),其中生成元的形式是这样的:

  (Tba)cd=δacδdb-1Nδabδcd,且满足对易关系[Tab,Tcd]=δcbTad-δadTcb。

  从群参数数目来看。

  SU(N+M)一共有(N+M)2-1个参数,而子群SU(N)SU(M)的群参数数目为:(N2-1)+(M2-1)=(N+M)2-1-(2NM+1)。

  其中2NM个参数描写直和矩阵之外的非对角元,此时还剩有最后一个参数,用来描写对角矩阵。

  这个参数的内容起点无法显示……咳咳,并不重要,重要的是另一个概念:

  对角矩阵所属的群是独立的。

  早先提及过无数次。

  在规范场论中。

  电磁力对应的是U(1)群,弱相互作用力对应SU(2)群,强相互作用力对应SU(3)群。

  而在数学上。

  U(1)其实就是复平面上的一个矢量C=re^(iθ)保持模长不变的变换,即e^(iα)乘以C的变换。可以说,U(1)的常用表示就是e^(iα)。

  其中α叫连续参数,这里是转动变换的角度。e指数上除了α还有一个i,叫这种变换的生成元。

  所以U(1)也可以看成矢量不变,而复数坐标系方向的选择有任意性,这些坐标系之间的变换关系。

  SU(2)就是复平面上的两个矢量(即两个复数),保持模长平方和不变的变换,要求变换矩阵的行列式

  为1,于是要求生成元的迹必然为0。这复平面上的两个矢量,可以看成一个4维实空间中的矢量,投影到两个平面上的投影矢量,每个平面上的投影矢量都对应一个独立的复数,两个投影矢量画在一个复平面上,就是上一段落所述的二维复矢量的来源。

  当4维空间中的一个矢量纯转动时,它的两个投影矢量即两个复数将保持模长平方和不变做各种变换,这种变换就是SU(2),常用表示的生成元是泡利矩阵。

  SU(3)则是复平面上3个矢量保持模长平方的和的不变的各种变换,它的生成元常用表示是盖尔曼矩阵。

  也就是这个矩阵如果在某种情况下支持U(1)群的数学表示,那么它就无法在SU(2)群和SU(3)群的情景下成立。

  这就好比是一个地球人。

  他能在地球的环境下安稳生存,那么就绝不可能在没有任何外部措施的情况下在冥王星上存活。

  因为冥王星上的温度、气压、含氧量和地球完全是不一样的,想要在冥王星上生存也可以,但是必须要配合其他一些装备——也就是在其他群的情境下更换表达式。

  当然了。

  如果你是体育生的话另说,毕竟体育生是可以硬抗核聚变的。

  但眼下汤川秀树……或者说铃木厚人发现的这个情况却有些特殊。

  根据赵忠尧等人在论文中的计算显示。

  对于SU(N+M)群的约化,他们主要通过使用杨图[ω]标记的杨算符Y[ω]作用在其张量空间得到。

  经过严格的讨论(这里忽略讨论过程)最终可以得到一个结果:

  在Y[ω]投影构成的张量空间中,有属于子群SU(N)SU(M)不可约表示[λ]×[μ]的子空间,即在表示[ω]关于子群的分导表示约化中出现子群表示[λ]×[μ]。

  这属于对角矩阵在SU(3)群的某种表示,整个推导过程汤川秀树没有发现任何问题。

  但问题是……

  在引入了中微子的那个额外项后,这个对角矩阵的三个杨图[ω],[λ]和[μ]的行数都小于了N+M,N和M。

  这代表了在这个框架下,数学层面可以用左手场ψLc代替右手场ψR,且可以看出ψLc所属的表示与ψR所属的表示互为复共轭。

  用人话来说就是……

  对角矩阵不需要太过变化,就能在SU(2)群成立了。

  用上头的例子来描述,就是一个地球人在没有任何外力的情况下在冥王星上活了下来。

  这tmd就很离谱了……

  想到这里。

  汤川秀树忍不住与小柴昌俊还有朝永振一郎对视了一眼。

  这是推导错误?

  还说内部另有他因?

  如果只是前者那自然没什么好说的,推导错误的情况下什么事情都有可能发生。

  但如果这个推导过程没有问题……那么这个所谓的【没有问题】,问题可就大了……

  咕噜——

  汤川秀树的喉结滚动了几下,很快做出了决断:

  “铃木同学,麻烦你打个电话给岸田教授,告诉他我们今天的实验室参观恐怕要取消了。”

  铃木厚人立马站直了身体:

  “哈依!”

  接着汤川秀树又对小柴昌俊还有朝永振一郎说道:

  “小柴桑,一郎先生,我们要不要试试?”

  尽管汤川秀树没有说要“试”什么,但小柴昌俊和朝永振一郎都理解了他的意思:

  试试去验证这个过程!

  如果这个情况真的可以广泛成立,那就预示着一件大事将要发生!

  什么中微子额外项、汤川耦合的变式在这件事面前,都渺小到了可以忽略!

  那就不是什么诺奖或者比肩牛爱的问题了,汤川秀树将会成为物理史上当之无愧的第一人!

  刹那之间。

  汤川秀树感觉自己因为车祸而仅存的一颗蛋蛋都充满了希望。

  随后铃木厚人前去联系起了岸田,汤川秀树则带着小柴昌俊还有朝永振一郎关上门,开始做起了进一步的验证。

  “我们需要先对Aμ的表达式进行拆解,争取将其中的24个生成元拆解出8个属于S U(3)的生成元,3个属于S U(2)的生成元以及1个属于SU(1)Y的生成元……”

  “这部分我可以独立完成,不过述如果要这样进行分解,那么就应该在子群SU(3)CSU(2)L进行相应变换的规范场吧?”

  “没错,我们需要对SU(3)群的生成元再一次进行线性组合,构造一组厄米矩阵Ti,作为SU(3)群李代数的一组新的基,这个任务可能需要拜托一郎先生了……”

  实话实说。

  这个验证环节并不困难——否则汤川秀树也不会那么快发现这个情况了。

  它的难点主要在于将额外数据项与对角矩阵联系在一起,这种数据敏感度世界上具备的人其实并不多。

  但很凑巧的是……

  作为未来地球中微子的专家,差一步就能获得诺奖的高能物理大佬,铃木厚人恰好具备了这方面的天赋。

  按照原本历史发展。

  只要再过四年。

  他便会第一个将额外项的厄米共轭部分与Yukawa耦合结合,先是名声大噪,接着迅速翻上人生的头一次车。

  当然了。

  如今因为某些原因,铃木厚人本人【遗憾】的错失了这个翻车机会。

  但是……

  让铃木厚人摔倒的这个坑并没有消失,反倒是机缘巧合的与徐云挖下的另一个坑互相贴合在了一起。

  经常玩沙子的同学应该都知道。

  如果你在一个坑的旁边再挖一个坑,那么很可能会出现一种情况——两个坑合的边缘坍塌合一,形成一个更大更深的坑。

  徐云原本只是想让京都大学的某些人摔上一跤,但如今的事态因为某些原因,却隐隐朝某个连徐云都未曾设想的方向发生了变化……

  ……

  “归一化条件满足了,这个期待值可以写出-3……”

  “咦,规范不变的Fermion动能项其实就是质量向,也就是左手场或两个右手场的乘积?”

  “汤川桑,这个能标可以忽略吧?忽略后引入你的汤川耦合定理,一个等式就成立了……”

  “这里有个问题,如果按照自发对称破缺的一般性理论,在没有规范场时与商群的生成元对应的Φ场分量是零质量Goldstone场,这似乎还是南部模型无法解释的死胡同。”

  “如果引入华夏人在元强子模型的重态分解呢?”

  “我看看……唔,似乎可以解释的通了。”

  “那就好,就按照这个思路继续下去吧,等我们理论被证明成功的那一天,给那些华夏人一点点被称赞的资格也是可以的……”

  ……

  两个小时后。

  估摸着情况差不多的铃木厚人拿起了杯水壶,正准备入屋给汤川秀树等人添点水。

  就在他伸出的手指即将扣响房门之际,屋内骤然爆发出了几道隔着墙壁都清晰无比的狂笑声:

  “哈哈哈!天皇在上,我们的猜测是对的!板载!!!!”

  听到这声狂笑的刹那。

  毫无防备的铃木厚人被吓得浑身一激灵,好在及时握住了水壶的壶把方才没有出事——水壶里装的可是滚烫的热水,如果打翻到身上的话铃木厚人可以直接改名成铃木厚葬了……

  随后铃木厚人小心翼翼的推开办公室大门,有些拘谨的探入了脑袋。

  只见此时此刻。

  汤川秀树、小柴昌俊以及朝永振一郎三人正如同后世天府酒吧里的男酮似的,彼此抱在一起又叫又跳,周围则是散落一地的计算稿纸,整个画风看起来贼TM诡异……

  铃木厚人见状迟疑了足足有十多秒,方才咬着牙走进了屋内。

  只见他蹑手蹑脚的来到了汤川秀树身边,放好水壶后小心的对汤川秀树问道:

  “教授,您的计算有结果了吗?”

  汤川秀树原本正和小柴昌俊唱着某首昭和小曲呢,闻言顿时哈哈一笑,从桌上拿起了几张算纸塞给了铃木厚人:

本文每页显示100行  共1590页  当前第1366
返回章节列表页    首页    上一页  ←  1366/1590  →  下一页    尾页  转到:
小提示:如您觉着本文好看,可以通过键盘上的方向键←或→快捷地打开上一页、下一页继续在线阅读。
也可下载走进不科学txt电子书到您的看书设备,以获得更快更好的阅读体验!遇到空白章节或是缺章乱码等请报告错误,谢谢!