久久小说网
最新小说 | 小编推荐 | 返回简介页 | 返回首页
(好看的玄幻小说,尽在久久小说网,记得收藏本站哦!)
选择背景色:
                    浏览字体:[ 加大 ]   
选择字体颜色: 双击鼠标滚屏: (1最慢,10最快)
走进不科学_分节阅读_第1559节
小说作者:新手钓鱼人   小说类别:玄幻小说   内容大小:3.45 MB   上传时间:2024-06-07 18:17:31

  靠前的有小牛、欧拉、有黎曼、有阿基米德等人,还有1100副本中徐云见过的老贾贾宪……

  最下方甚至着徐云的小初高老师……

  人像墙洋洋洒洒,不下数万人,分成上百行。

  人名墙行数越靠上方,每行的名字就越少。

  比如第一行的位置上,只写着三个人的姓名:

  阿尔伯特·爱因斯坦。

  艾萨克·牛顿。

  詹姆斯·克拉克·麦克斯韦。

  其中老爱的名字处于一个灰白相间、看起来有些缥缈的透明状态,隐隐可见少许光亮。

  小牛和小麦的名字则已经彻底黯淡了下去,灰黑色一片。

  第二行的人数则接近十个,有高斯、普朗克等等……

  过了片刻。

  在第六行的某个位置上,一个同样处于漂浮态的名字忽然像是被唤醒了一般,缓缓焕发出了金色的光芒。

  只见其上赫然写着一个名字:

  陈景润。

  与此同时。

  在徐云看不见的虚空中,一位穿着中山装、剃着寸头,面容有些严肃甚至有点桀骜的青年从中踏步而出。

  他的目光先是在徐云身上停顿了一会儿,随后忽然感应到了什么,抬头看向了窗外某个方位。

  那里是科院接待所内部的一处小园林,过道上摆放着一些华夏科学从业者的雕像,其中有一尊便属于……陈景润。

  此时正值三月末,时间临近清明,因此这些雕像边还放着一些特殊的‘贡品’——有鲜花,有水果,还有一些特殊的物件。

  例如陈景润的雕像前便放着一盒扑克牌,一瓶汾酒以及一本陈景润主编的《组合数学》教材。

  虚空中的陈景润见状,嘴角微微翘起了一丝弧度,无比复杂的看了眼这个时代的天空,随后毅然决然的踏步融入了徐云体内。

  “……”

  又是一阵熟悉的眩晕感过后,徐云再次感觉自己的视野变得无比开阔了起来。

  徐云看了眼自己的双手,明白思维卡已经被激活了。

  在这一次的套卡奖励之中,陈景润的思维卡算是一个比较特殊的情况。

  这次思维卡除了华夏全明星的主题之外,很明显都是以物理应用上的成就和能力对思维卡进行的分类。

  比如说老郭,他的事迹无比感人,但在卡片能力上他还是被分到了陆光达的下一档。

  陈景润也是如此。

  陈景润在数学上的能力毋庸置疑,如果按照数学能力划分,他应该可以归类到银卡范畴。

  但由于这次卡组的核心是物理……或者说应用层次的成就,因此陈景润最终还是被归类到了铜卡级别。

  如果是在解决物理问题的时候激活陈景润思维卡,说实话这张卡片能起到的效果大概也就是铜卡水准,但要是你准备处理的东西涉及到了数学……

  那么毫无疑问,这张卡的性价比将会爆膨!

  譬如……徐云这次要解决的问题。

  聪明的同学应该还记得。

  当初在1100副本完成后,徐云曾经得到过一个很奇怪的奖励。

  奖励的内容是一张写满了方程的纸片,后来徐云对它进行过了一次解析,从而得到了孤点粒子的概率轨道。

  某种意义上来说。

  那条粒子轨道和驴兄一样,贯穿了徐云过去这段几乎所有的事件。

  而实际上。

  那条轨道结果只是方程前三分之一的内容,后头最少还有两个阶段没有被解出来。

  换而言之。

  按照孤点粒子的情况来推测,后两个阶段应该也有对应的……唔怎么说呢,应该描述为有对应的物理现象?

  剩余的两个阶段徐云也花了一些零散时间研究过,奈何由于能力问题,他一直没有找出正确的解——如今徐云的能力大概在教授之上院士之下,而这两个阶段中最简单的第二阶段也属于菲尔兹奖……也就是数学最高奖的难度层次了。

  至于第三阶段的那个神秘比值……徐云敢肯定,它一定是一项可以震动世界的结果,保守估计都和相对论是同一级的,属于徐云目前哪怕花掉所有思维卡都不可能触及的高度。

  至少……徐云得和老爱见过一次面,才有可能讨论那事儿。

  当然了。

  没结果归没结果,徐云倒也不至于一点收获都没有。

  譬如在解方程的过程中他就发现,第二阶段的最终成果应该与某个机理有关。

  因为徐云在期间发现了温度和类似层状结构的表达式,显然是某种物理现象的新媒介,而且多半和晶体有一定关系。

  所以在得知了自己答辩委员会的评审阵容之后,徐云便把主意打到了第二阶段的成果上。

  他有一种预感,第二阶段的这个未必能够给他带来多少奖项上的荣誉,但很可能会产生某种更大的影响力。

  当然了。

  即便徐云的猜测有误也没事儿,徐云手上还有冷聚变的相关研究做打底呢。

  随后徐云深吸一口气,将注意力放到了面前的算纸上。

  只见他拿起笔,很快在纸上写下了那道方程:

  4D/B2=4(√(D1D2))2/[2D0]2=√(D1D2)/[D0]=(1-η2)≤1……

  {qjik}K(Z/t)=∑(jik=S)∏(jik=q)(Xi)(ωj)(rk);(j=0,1,2,3……;i=0,1,2,3……;k=0,1,2,3……)

  {qjik}K(Z/t)=[xaK(Z±S±N±p),xbK(Z±S±N±p),……,xpK(Z±S±N±p),……}∈{DH}K(Z±S±N±p)……

  (1-ηf2)(Z±3)=[{K(Z±3)√D}/{R}]K(Z±M±N±3)=∑(ji=3)(ηa+ηb+ηc)K(Z±N±3);

  (1-η2)(Z±(N=5)±3):(K(Z±3)√120)K/[(1/3)K(8+5+3)]K(Z±1)≤1(Z±(N=5)±3);

  W(x)=(1-η[xy]2)K(Z±S±N±p)/t{0,2}K(Z±S±N±p)/t{W(x0)}K(Z±S±N±p)/t……

  最后的一个公式……或者说一个数值为:

  Le(sx)(Z/t)=[∑(1/C(±S±p)-1{∏xi-1}]-1=∏(1-X(p)p-s)-1。

  这是一个标准的正则化组合系数和解析延拓方程组,涉及到了无限多层次的对称与不对称曲线曲面的圆对数与拓扑。

  其中第一阶段是一到三行,通过∑(jik=S)∏(jik=q)(Xi)(ωj)可以确定曲面与经线成了某个定角,从而假设定模型λ=(A,B,π),以及观测序列O=(o1,o2,……,oT)。

  按照上面的逻辑推导,就可以得出孤点粒子的概率轨道。

  而徐云现在要做的则是……

  推导第三到第五行,也就是第二阶段。

  徐云解答第二阶段的思路是讨论存在性问题,再将现在的收敛半径变为无穷大,从而在整个实数线上收敛。

  如今在陈景润思维卡的加持下,徐云对于自己思路的把握又高了几分——这个方向没错。

  随后他顿了顿,继续推导了起来。

  “已知允许幂级数中的变量x取复数值时,幂级数收敛的值在复平面上形成一个二维区域,就幂级数来说,这个区域总是具有圆盘的形状……”

  “然后利用高斯函数的Fourier变换F{e-a2t2}(k)=πae-π2k2/a2,以及Poisson求和公式可以得到……”

  “考虑积分g(s)=12πi∮γzs-1e-z-1dz,其中围道应该是limk→∞gk(s)=g(s)……”(这些推导是我自己算的,这部分我不太确定正不正确,用了留数定理和梅林积分变换,要是有问题欢迎指正或者读者群私聊我,这种涉及到比较多数学问题的推导不是我的专精方向)

  众所周知。

  解析延拓就是指两个解析函数f1(z)与f2(z)分别在区域D1与D2解析,区域D1与D2有一交集 D,且在区域D上恒有f1(z)=f2(z)。

  这时便可以认为解析函数f1(z)与f2(z)在对方的区域上互为解析延拓,同时解析函数f1(z)与f2(z)实际上是同一函数f(z)在不同区域的不同表达式。

  举个最简单的例子。

  由幂级数定义的函数f1(z)=∑n=0∞zn在单位圆|z|<1内解析,后者在全平面除了z=1外都有定义(定义域不只是单位圆了)。

  所以我们说函数f(z)=11-z是幂级数f1(z)在复平面上的解析延拓。

  非常简单,也非常好理解。

  徐云在第一阶段得到的广义积分在0c||Re(s)<0的区域M(s)可以仍然有定义,于是,上面的F{e-a2t2}(k)就是一个亚纯函数。

  “然后再引入Γ函数,它是阶乘函数在实数与复数域上的扩展,当它的宗量为正整数时,有Γ(n)=(n-1)!……”

  “这部分似乎可以用渐进概念来做个近似……”

  “如果近似到场论的话,相当于量子化自由Klein-Gordon场时,(+m2)Φ(x)=0,那么场算符就是Φ(x)=∫d3p(2π)312Ep(ape-ipx+apfeipx)……”

  “然后再把场算符代算回来……”

  半个小时后。

  徐云忽然停下了笔,眉头微微皱了起来:

  “激发电场……果然是和晶体有关。”

  此时此刻。

  徐云面前的算纸之上,赫然正写着几个Nabla算符。

  要知道。

  他之前虽然对推导过程进行过渐进处理,但本身是没有引入激发电场概念的,更别说徐云之前还完成了代算。

  也就是说这几个Nabla算符并不是渐进项解开后出现的错误算子,而是与方程自身有关的参数。

  更重要的是……

  随着这一步方程的解开,公式中出现了一个新的并立项。

  它叫做……频率,计量单位是meV。

  频率、激发电场、加上徐云最早独力发现的类似层状结构的表达式……

本文每页显示100行  共1590页  当前第1559
返回章节列表页    首页    上一页  ←  1559/1590  →  下一页    尾页  转到:
小提示:如您觉着本文好看,可以通过键盘上的方向键←或→快捷地打开上一页、下一页继续在线阅读。
也可下载走进不科学txt电子书到您的看书设备,以获得更快更好的阅读体验!遇到空白章节或是缺章乱码等请报告错误,谢谢!